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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

� Excitation Emission Matrix (EEM) fluo-
rescence used for source apportionment. 
� Convolutional Neural Network used to 

interpret EEM spectra. 
� Predicted the presence or absence of 

three sources with an overall accuracy 
of 89%. 
� Limit of detection in air from 0.7 to 

2.6 μg/m3 for 24-h sample at 1.8 lpm.  
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A B S T R A C T   

The inhalation of particulate matter (PM) is a significant health risk associated with reduced life expectancy due 
to increased cardio-pulmonary disease and exacerbation of respiratory diseases such as asthma and pneumonia. 
PM originates from natural and anthropogenic sources including combustion engines, cigarettes, agricultural 
burning, and forest fires. Identifying the source of PM can inform effective mitigation strategies and policies, but 
this is difficult to do using current techniques. Here we present a method for identifying PM source using 
excitation emission matrix (EEM) fluorescence spectroscopy and a machine learning algorithm. We collected 
combustion generated PM2.5 from wood burning, diesel exhaust, and cigarettes using filters. Filters were 
weighted to determine mass concentration followed by extraction into cyclohexane and analysis by EEM fluo-
rescence spectroscopy. Spectra obtained from each source served as training data for a convolutional neural 
network (CNN) used for source identification in mixed samples. This method can predict the presence or absence 
of the three laboratory sources with an overall accuracy of 89% when the threshold for classifying a source as 
present is 1.1 μg/m3 in air over a 24-h sampling time. The limit of detection for cigarette, diesel and wood are 

* Corresponding author. Department of Family Medicine, University of Washington, United States. 
E-mail address: jposner@uw.edu (J.D. Posner).  

Contents lists available at ScienceDirect 

Atmospheric Environment 

journal homepage: http://www.elsevier.com/locate/atmosenv 

https://doi.org/10.1016/j.atmosenv.2019.117065 
Received 5 August 2019; Received in revised form 14 October 2019; Accepted 17 October 2019   

mailto:jposner@uw.edu
www.sciencedirect.com/science/journal/13522310
https://http://www.elsevier.com/locate/atmosenv
https://doi.org/10.1016/j.atmosenv.2019.117065
https://doi.org/10.1016/j.atmosenv.2019.117065
https://doi.org/10.1016/j.atmosenv.2019.117065
http://crossmark.crossref.org/dialog/?doi=10.1016/j.atmosenv.2019.117065&domain=pdf


Atmospheric Environment 220 (2020) 117065

2

0.7, 2.6, 0.9 μg/m3, respectively, in air assuming a 24-h sampling time at an air sampling rate of 1.8 L per minute. 
We applied the CNN algorithm developed using the laboratory training data to a small set of field samples and 
found the algorithm was effective in some cases but would require a training data set containing more samples to 
be more broadly applicable.   

1. Introduction 

According to the Global Burden of Disease study, air pollution is the 
world’s largest environmental health risk accounting for 4.9 million 
deaths and 147 million disability adjusted life years in 2017 (Stanaway 
et al., 2018). Particulate matter (PM) originates from a wide range of 
natural and anthropogenic sources. Most PM is a result of emissions 
directly from sources such as diesel engines, agricultural burning, 
cooking with biomass, electrical power generation, pollen, bacteria, and 
soil. In addition to these primary sources, PM results from chemical 
processes in the atmosphere, referred to as secondary sources (Godish, 
1997). In this work we focus on PM from cigarettes, diesel and wood-
smoke due to their relevance to health. Cigarette smoking is estimated to 
cause 7.1 million deaths each year and second-hand smoke is estimated 
to cause 1.2 million deaths. Solid fuel combustion for cooking is a sig-
nificant contributor to indoor air pollution and was estimated to be 
responsible for 1.6 million deaths in 2017. Finally, ambient PM was 
estimated to account for 2.9 million deaths (Stanaway et al., 2018; 
Institute for Health Metrics and Evaluation (IHME), 2018). Diesel 
exhaust is a contributor to transportation emissions, which are esti-
mated to account for 25% of total ambient PM pollution in large cities 
(Karagulian et al., 2015). The human respiratory system is effective at 
removing many of the particles that enter the respiratory tract before 
they enter deep into the lungs. Larger particles are removed by impac-
tion and sedimentation in the upper respiratory tract and branching 
airways of the lungs while smaller particles can penetrate deeper into 
the lungs (Tsuda et al., 2013). A size cut-off of 2.5 μm in aerodynamic 
equivalent diameter (PM2.5) and smaller has been established for the 
purpose of regulation of PM pollution (Miller et al., 1979). The USEPA 
standards for maximum exposure levels are 12 μg/m3 annual average 
and 35 μg/m3 daily average (US EPA, 2018). The World Health Orga-
nization (WHO) guidelines are lower at 10 and 25 μg/m3 , respectively 
(World Health Organization, 2006). Studies suggest that some sources of 
PM are worse for health than others. For example, black carbon, which is 
associated with traffic, has been shown to be worse for health than PM2.5 
alone (Janssen et al., 2011; Bell et al., 2014), but the body of evidence as 
a whole does not conclusively show what sources or combinations 
thereof are the worst for health (Stanek et al., 2011; West et al., 2016; 
Adams et al., 2015; Hime et al., 2018). 

Asthma is known to be exacerbated by PM2.5 exposure (Koenig, 
1999). In practice, clinicians advise asthmatic patients to avoid exposure 
to pollution that they are sensitive to and to avoid exertion outdoors 
when air quality is poor (National Asthma Education and Prevention 
Program, 2007). A study using parental questionnaires and proximity to 
roadways found increased asthma risk in children with exposure to 
second hand smoke, but not with roadway proximity (Lewis et al., 
2005). User-friendly and inexpensive tools for monitoring source spe-
cific PM exposure will enable continued and more quantitative epide-
miological research in the area of source specific health impacts and may 
enable regulations targeting the worst sources of PM pollution (Duncan 
et al., 2018). 

In this work, we use excitation-emission matrix (EEM) fluorescent 
spectroscopy and machine learning to identify the source of PM. Fluo-
rescence spectroscopy is a sensitive analytical technique with the ability 
to detect fluorescence from a single molecule using sophisticated 
instrumentation (Moerner and Fromm, 2003). With widely available 
benchtop fluorimeters limits of detection are around 1 ng/mL for poly-
cyclic aromatic hydrocarbons, a common chemical component of PM air 
pollution (Elcoroaristizabal et al., 2014a; Nahorniak and Booksh, 2006). 

For this reason, fluorescence spectroscopy is an attractive analytical 
technique for PM analysis due to typical sample sizes of PM being small. 
Although fluorescence is a very sensitive technique it is not highly 
specific due to many analytes having overlapping spectra. EEM spec-
troscopy can increase the specificity of fluorescence spectroscopy by 
collecting fluorescent emission spectra at multiple excitation wave-
lengths, giving a 2D dataset or matrix of fluorescence intensities 
(Johnson et al., 1977). EEM spectroscopy has been widely applied to 
analysis of complex environmental water samples (Andrade-Eiroa et al., 
2013) as well as analysis of atmospheric PM (Aryal et al., 2015; Chen 
et al., 2016; Elcoroaristizabal et al., 2014b; Matos et al., 2015; Mladenov 
et al., 2009, 2011; Nakajima et al., 2008). Mladenov et al. suggested 
EEM could be useful as a source identification tool for atmospheric PM, 
but did not evaluate the ability of EEM alone to identify sources (Mla-
denov et al., 2011). Other work applying EEM to atmospheric aerosols 
discusses the chemical composition of various regions of fluorescence, 
but does not discuss using EEM as a source apportionment or identifi-
cation tool (Aryal et al., 2015; Chen et al., 2016; Elcoroaristizabal et al., 
2014b; Matos et al., 2015; Mladenov et al., 2009; Nakajima et al., 2008). 

EEMs provide complex spectral information consisting of thousands 
of wavelength dependent fluorescent intensities (~20,000 datapoints 
for the EEMs in this work), as such, a variety of approaches have been 
used to interpret EEM spectra. Fluorescent regional integration con-
siders specific regions of an EEM spectrum based on compounds of in-
terest that display fluorescence in various regions (e.g. aromatic protein 
and humic acid like regions when applied to water samples) (Chen et al., 
2016). This approach has the advantage of simplicity, but it is unable to 
distinguish overlapping spectra which was a challenge in our samples. 
Techniques used for interpreting EEM spectra that can handle over-
lapping spectra include partial least squares regression (PLS), parallel 
factor analysis (PARAFAC), and multivariate curve resolution (MCR). 
These techniques have been used successfully to identify specific 
chemical components of atmospheric PM, but have not been used for 
source apportionment (Elcoroaristizabal et al., 2014a; Aryal et al., 2015; 
Matos et al., 2015). In this work we used a convolutional neural network 
(CNN), a machine-learning technique that is well suited to handle 2D 
data like EEM spectra. Machine learning techniques, like a CNN, do not 
rely on underlying theory or assumptions to create a model, instead 
these techniques use data inputs and expected outputs, referred to as 
training data, to create a non-parametric model. The model framework 
is defined and then the training data are used to iteratively adjust model 
parameters to best fit the training data, this is the learning or training 
process. 

A CNN is a combination of a neural network (Hastie, 2013) preceded 
by a feature recognition process called convolution (Goodfellow et al., 
2016). Individual steps in the network are called layers. The first layers 
are convolutional layers consisting of filters of user-defined size which 
are iteratively scanned, or convolved, across the input data. The filter 
values are randomly initialized and adjusted to identify relevant features 
during the training process. CNNs excel at processing 2D data (e.g. 
image classification (Simonyan and Zisserman, 2014; Krizhevsky et al., 
2012)) due to their ability to learn patterns or features encoded in spatial 
data using the convolutional layers. For example, the convolutional 
layers of an image classification CNN may recognize features such as 
noses, eyes, and ears when classifying images of animals (Zeiler and 
Fergus, 2013; Lee et al., 2009). The result of the convolution process, 
referred to as a feature map, is fed into a neural network to map the 
learned patterns and features to an output value or classification. In the 
animal classification example, a feature map showing the presence of 
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floppy ears would suggest the image was a dog. However, all features in 
the map are considered, so if there are also a trunk and tusks, the image 
would be identified as an elephant. In the case of EEM data the feature 
maps will highlight important spectral patterns. 

Neural networks and CNNs have been applied to a variety of PM 
exposure related problems. For example, a CNN has been used to predict 
continuous PM2.5 concentrations from discrete measurements (Di et al., 
2016). Source apportionment has been conducted using a neural 
network with elemental composition as the input, which is similar to our 
work, but the input data was 1D elemental data so convolution layers are 
not used (Song and Hopke, 1996). Neural networks have been used to 
process EEM spectra for analysis of water samples, contaminates in olive 
oil, and antibiotics in urine (Carstea et al., 2010; Bieroza et al., 2009; 
García-Reiriz et al., 2007, 2008). In these examples, neural networks are 
used because of their ability to fit non-linear behavior without the need 
for assumptions about the underlying data and their ability to interpret 
information from the entire EEM, both of which are applicable to our 
work. 

In this paper, we demonstrate the ability of EEM coupled with a CNN 
to identify PM from woodsmoke, cigarettes and diesel exhaust with a 
limit of detection of 2.6 μg/m3 based on a 24-h sampling time. PM2.5 
samples were collected on PTFE filters using personal sampling devices. 
Samples were weighed to determine PM2.5 mass concentration and then 
extracted in cyclohexane. The cyclohexane extracts were analyzed using 
EEM fluorescence. The spectra from the three sources show unique but 
overlapping fluorescent EEM spectra. We applied a CNN to identify the 
presence or absence of the three sources present in a set of EEM spectra 
consisting of one, two, or all three sources. We achieved an overall ac-
curacy of 89% in identifying sources. This technique has a limit of 
detection well below the USEPA and WHO recommended exposure 
levels for PM and may be useful for personal monitoring in epidemio-
logical studies of respiratory diseases such as asthma. 

2. Materials and methods 

2.1. Particulate matter sampling and extraction 

We sampled PM2.5 from cigarettes, diesel exhaust, and woodsmoke 
using 2.0 μm pore PTFE membrane filters (Pall Zefluor®, Pall Cat. 
#P5PJ037) housed in Harvard School of Public Health Personal Expo-
sure Monitor (BGI, Butler, NJ Cat. # HP2518) sampling cassettes. Filters 
were operated at a flowrate of 1.8 lpm using either portable or stationary 
vacuum pumps (AirChek XR5000 pump, SKC Inc., Eighty Four, PA or 
VP0625-V1014-D2-0511, Medo USA, Roselle, IL with custom manifold 
of nine VFB-65-BV roto-meters, Dwyer Instrument, Michigan City, IN). 
Flow rates were verified using an air flow calibrator (Gilian Gilibrator 
PN# 800268, Sensidyne, St. Petersburg, FL). 

We collected woodsmoke by burning 1 ½ by ¾ inch Douglas fir sticks 
cut from dimensional lumber in a prototype side-feed, natural-draft, 
improved cookstove. Our sampling devices were placed in a sealed 
chamber connected to the exhaust hood duct at the sampling point 
described for gravimetric sampling by Sullivan et al. (Sullivan et al., 
2017) We collected diesel exhaust particulate from the exposure room in 
UW’s controlled inhalation diesel exhaust exposure facility (Gould et al., 
2008). The diesel PM is generated by a 435 cc direct injection single 
cylinder diesel engine (Yanmar LW Series) fueled with ultra-low-sulfur 
diesel. We collected cigarette smoke either by lighting cigarettes in a 
fume hood and allowing them to smolder or from the exposure chamber 
of a cigarette smoking machine (Model TE-10B, Teague Enterprises, 
Woodland, CA). The TE-10B produces mainstream smoke mixed with 
sidestream smoke from filtered 3R4F research cigarettes (Tobacco 
Research Institute, University of Kentucky, Lexington, KY). Two ciga-
rettes were puffed simultaneously for 2 s for a total of 8 puffs, at a flow 
rate of 1.05 l/min. The smoke collected represents approximately 10% 
mainstream and 90% sidestream to more closely resemble secondhand 
smoke. 

Following collection, filters are removed from the samplers and 
placed in a chamber with 37% (SD ¼ 4%) relative humidity for 24 h 
(Allen et al., 2001). The filters were then weighed using a micro-balance 
with 0.5 μg resolution (Mettler-Toledo UMT-2, Greifensee, Switzerland). 
Initial weights of each filter are recorded in the same manner and we use 
the difference to calculate the mass of PM2.5 collected. 

We placed the filters into 20 mL glass vials (Cat # 89096-774 VWR, 
Edison, NJ), submerged the filters in cyclohexane (Uvasol® Cyclo-
hexane for Spectroscopy, MilliporeSigma Cat. #1.02822.2500), and 
sonicated for 30 min (42 kHz, 2510R-MT Branson, Ultrasonic Corp., 
Danbury, CT). Filters were generally submerged in ~10 mL of cyclo-
hexane to achieve an initial extract concentration of 5 μg PM/mL 
cyclohexane or greater. For filters with low PM loading we cut the filter 
into fourths to enable extraction in as little as 3 mL of cyclohexane to 
maintain extract concentrations at or above 5 μg/mL. Typically, the PM 
was not dislodged from the filter during extraction allowing for direct 
analysis of the extract. If significant PM was dislodged and suspended 
causing turbidity, the extract was filtered with a 0.2 μm PTFE syringe 
filter (VWR Cat. #28145-491) before analysis. 

We collected a total of 37 filter samples and used the extracts from 
these filters to create 113 samples for EEM analysis. They consisted of 81 
single source samples diluted to concentrations between 0.2 μg/mL and 
10 μg/mL, 21 mixtures of the single source samples and five samples 
from filters with mixed PM from serial sampling of the sources. We also 
collected six spectra from liquid extracts of filters that were loaded into 
sampling devices and weighed, but no air was drawn through the filters 
(method blanks). For training our algorithm, we used 12 of the 113 EEM 
samples leaving a total of 101 samples for testing the algorithm. Table 1 
summarizes the total number of each type of sample used for training 
and testing. 

In addition to the samples collected in the laboratory, we collected 
twelve field samples to evaluate our method on real world samples. 
Eight field samples were taken in Seattle homes and in campus buildings 
(background field samples) and four were collected in areas we expected 
to be dominated by cigarette, diesel, or woodsmoke (expected primary 
source field samples). We collected and extracted the field samples using 
the same equipment and methods as the laboratory samples. EEM 
spectra collected from these two groups of field spectra are shown in 
Fig. S7. 

2.2. Fluorescence EEM analysis 

PM extracts were stored in 4 ml vials (Cat # 66009-876 VWR, Edison, 
NJ) until analysis. For EEM spectroscopy ~3 ml of PM extract was 
transferred to a 1 cm � 1 cm quartz cuvette (Item # CV10Q3500FS, 
Thorlabs Inc., Newton, New Jersey). We collected EEM data using a 
fluorometer with an extended-UV 150W xenon-arc lamp (Aqualog-880- 
C, HORIBA Instruments Inc. Edison, New Jersey). We excited samples 
between 200 and 500 nm at 2 nm increments with an excitation slit 

Table 1 
Number of unique filter samples and liquid extract samples generated from 
extracts, dilutions of extracts and mixtures of extracts for each category of 
sample. We collected a total of 113 EEM spectra. Twelve of these spectra were 
used to generate training data leaving 101 spectra in the test set.  

Sample Type Number of Unique 
Filters 

Samples for 
EEM 

Spectra used for 
training 

Cigarette 9 26 4 
Diesel 10 29 4 
Woodsmoke 9 26 4 
Extract Mixtures N/A* 21 0 
Multiple- 

Exposure 
5 5 0 

Method Blanks 4 6 0 
Total 37 113 12 

*Mixtures of Cigarette, Diesel, and Woodsmoke samples. 
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width of 5 nm and recorded emission spectra between 246 and 826 nm 
on a CCD array. The CCD array has 1000 pixels each covering 0.58 nm. 
We collected data using 4-pixel binning giving an effective emission slit 
width of 2.32 nm. We kept emission data between 246 and 572 nm and 
excitation data between 224 and 500 nm. Emission data above 572 nm 
were discarded because minimal fluorescence was observed above this 
wavelength and excitation wavelengths below 224 nm were removed 
due to low excitation lamp intensity between 200 and 224 nm yielding 
extensive noise in the data. The raw fluorescent signal is corrected for 
detector response and lamp intensity by the instrument (Engelborghs 
et al., 2014), and is normalized to Raman units using Raman area data 
collected daily from a Milli-Q water sample (Murphy et al., 2010). Daily 
solvent blanks are recorded and used for blank subtraction to minimize 
the effect of Rayleigh and Raman scatter. To further reduce the effects of 
Rayleigh scatter we excised values within 10 nm of the first and second 
order Rayleigh scattering bands followed by replacement of the values 
using 2-dimmensional interpolation (Zepp et al., 2004). We did not 
correct for the inner filter effect because we observed absorbance below 
0.2 for our samples that were recorded with the Aqualog during EEM 
collection. 

2.3. Machine learning for identification of sources present 

We used a CNN to identify the presence or absence of known PM 
sources in the EEM spectra. The CNN was trained on 6375 training 
spectra generated from twelve single source spectra from cigarette, 
diesel, and woodsmoke PM (four from each source). We generated the 

training dataset using a data augmentation approach by mathematical 
combination of twelve original spectra, assuming fluorescence is line-
arly proportional to concentration (see section S3 for data supporting 
this assumption). The process for generating spectra is shown sche-
matically in Fig. 1 and described in more detail in section S4. First, we 
created 1000 spectra for cigarette, diesel, and woodsmoke in a linearly 
spaced concentration range from 0 to 5 μg/mL resulting in 3000 single- 
source spectra. Then we created digital mixtures of the three sources in a 
logarithmically spaced concentration range from 0.01 to 6.3 in fifteen 
steps (153 combinations) giving 3375 training spectra consisting of 
mixtures. In creating mixtures by mathematically combining spectra 
from pure sources we assumed matrix effects of mixing to be negligible. 
We showed this to be a reasonable assumption by comparing digital and 
actual mixtures as illustrated in Fig. S5. 

The CNN used in this work consists of three convolutional layers each 
followed by max pooling (Dumoulin and Visin, 2016), as shown in 
Fig. 2. All convolutions are performed using padding, so the dimensions 
of input and output data are the same (Dumoulin and Visin, 2016). The 
first convolutional layer contains twenty 5-by-5 filters equating to 
11.6 nm in emission (height) and 10 nm in excitation (width) as shown 
by the red box (Fig. 2a). This is followed with 3-by-3 max pooling that 
reduces the data from 143-by-139 to 47-by-46. The second convolu-
tional layer is ten 10-by-10 filters followed by 3-by-3 max pooling. The 
final convolutional layer applies ten 15-by-15 filters to the 15-by-15 
feature maps. The output of the third convolutional layer is max 
pooled to a size of 5-by-5 and then flattened and connected to a dense 
neural network with three hidden layers having 512, 256, and 256 nodes 
in each layer, respectively. A dropout rate of 20% is used between all 
convolutional and fully connected layers (Srivastava et al., 2014). The 
exponential linear unit was used as the activation function for all con-
volutional and hidden layers and a linear activation function was used 
for the output layer (Clevert et al., 2015), the loss function was the 
mean-squared-error (Hastie, 2013). The results described are from a 
network that was trained for 80 epochs. Details of how we selected the 
training duration are included in the SI. The CNN was implemented in 
Python 3 using Keras (Chollet, 2018) and TensorFlow (Abadi et al., 
2015). 

Our EEMs are 2D spatial data made up of combinations of peaks and 
valleys, which correlate to a particular chemical or combination of 
chemicals that are extracted from the PM samples. These peaks and 
valleys vary in their intensity across emission and excitation dimensions. 
The convolution filters learn to fit these varying shapes to better detect 
peak presence as they are iteratively applied over the EEM. Subsequent 
convolutional layers are used to identify patterns of lower level features, 
for example, a second convolutional layer may look for a group of nar-
row peaks identified in the previous convolutional layer. The results of 
the convolutional layers are feature maps showing the presence or 
absence of features. The feature map data are fed into fully connected 
layers that map this information to the desired output. In our case this 
process assigns a predicted concentration value for each source that we 
use to predict the presence or absence of the sources. 

Fig. 1. Graphical representation of the loop used to generate training spectra. 
Twelve original spectra, four from each of cigarette, diesel, and woodsmoke, 
(A) are averaged using random weights (B) producing prototypical spectra for 
each source (C) that are scaled (D) giving single source spectra at target con-
centration (E) that are combined (F) to generate a training spectra (G). This 
loop is repeated from the beginning for each training spectra generated in order 
to simulate variability associated with PM sampling and EEM collection. 

Fig. 2. CNN Network Diagram. (a) Input spectra are 
first convolved with twenty 5-by-5 filters. (b) Con-
volutional layers and max pooling layers are shown 
with associated data shapes. Convolutions (10 � 10 
followed by 15 � 15) are shown in red and 3-by-3 
max pooling is shown in black. Filters, data, and 
pooling sizes are shown to scale. (c) Output of the 
convolutional layers is flattened to a shape of 250 by 
1 and fed into fully connected layers resulting in 3 
output values (not to scale). (For interpretation of the 
references to color in this figure legend, the reader is 
referred to the Web version of this article.)   
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3. Results and discussion 

PM extracts from cigarette, woodsmoke, and diesel show unique 
EEM spectra, as shown in Fig. 3. We also extracted cigarette and 
woodsmoke in methanol and water for comparison as shown in Fig. S11. 
Cigarette spectra consist of two peaks at ~350 nm emission wavelength. 
Diesel spectra consist of single primary peak also located at ~350 nm 
emission with less fluorescence surrounding the peak than cigarette. 
Woodsmoke has spectra consisting of six peaks in the region from 400 to 
475 nm emission and 225 to 275 nm excitation. Cigarette and wood-
smoke have similar maximum fluorescent intensity levels per mass of 
PM while diesel has a lower intensity. Woodsmoke shows fluorescence 
over the broadest region and generally at higher emission wavelengths 
than cigarette and diesel. The differences in the spectra are the result of 
differences in chemical composition of the PM samples. Combustion 
generated PM contains thousands of chemical compounds, including 
polycyclic aromatic hydrocarbons (PAHs) (Samburova et al., 2016; Lin 
et al., 2018). We do not attempt to quantify these underlying differences 
on a compound-by-compound level, but instead use the combined effect 
to identify the sources of interest. PAH compounds with higher molec-
ular weight absorb light and show fluorescence at higher wavelengths 
(Rieger and Müllen, 2010). Based on this approximation, woodsmoke 
contains compounds of higher molecular weight than cigarette and 
diesel; however, other factors, such as presence of functional groups (e. 
g. amino and hydroxyl), may modify the absorbance and fluorescence so 
we do not make quantitative assessments of molecular weight based on 
EEM alone (Rieger and Müllen, 2010; Birks, 1970). The spectra from the 
different sources have overlapping regions suggesting challenges in 

distinguishing individual sources from mixed samples. 
The CNN algorithm was trained on EEM spectra with known par-

ticulate concentrations generated as described in the methods section. 
True concentration values are determined from PM mass measurement 
and extraction volume. We then provide the CNN this same training data 
and ask it to predict the concentration of the three sources. These results 
are shown in Fig. 4. The diagonal line represents perfect prediction of 
the samples where the CNN prediction values are equal to the values 
provided during training. The data points that result from the analysis of 
the original training data roughly follow the diagonal. The R2 value for 
the fit to the training data for cigarette, diesel, and woodsmoke are 0.99, 
0.97, 0.97 respectively. One reason for scatter in the training data is 
extracts at the same particulate matter concentration have different 
fluorescent signal strengths. This variation in signal strength is shown in 
Fig. S4 which plots fluorescent intensity vs. concentration for single 
source spectra. 

We then predict the concentration of the 101 test spectra which are 
shown in the parity plots of Fig. 4. The results generally follow the di-
agonal trend, but there are significant under- and over-predictions. This 
can be attributed to the fact that total fluorescent intensity from a given 
source varies from sample to sample at the same concentration. The R2 

value for the fit to the test data for cigarette is 0.86, for diesel it is 0.79, 
and for woodsmoke it is 0.89. The lower R2 values for the test data are 
due to the overlap of the signals (Fig. 4) that makes mixtures difficult to 
quantify and variation in fluorescent signal intensity among samples at 
the same concentration (Fig. S4). 

We used the predicted results for samples containing only a single 
source to determine the limit of detection (LoD). The LoD for each source 

Fig. 3. Fluorescence EEM spectra of (a) cigarette smoke at an extract concentration of 2 μg/ml, (b) diesel soot at 10 μg/ml, and (c) woodsmoke at 2 μg/ml. PM 
samples from the three sources were extracted in cyclohexane and exhibit unique spectral fingerprints. Cigarette and woodsmoke have similar maximum fluorescent 
intensity on a per mass basis while diesel has a lower signal intensity. 

Fig. 4. Parity plots showing predicted concentration vs. true extract concentrations for (a) cigarette (R2 training ¼ 0.99, R2 test ¼ 0.86), (b) diesel (R2 

training ¼ 0.96, R2 test ¼ 0.79) and (c) woodsmoke (R2 training ¼ 0.97, R2 test ¼ 0.89). The data points shown as solid colors (orange, brown and green) are from 101 
test spectra, the points shown in light blue are the results for the simulated training data. (For interpretation of the references to color in this figure legend, the reader 
is referred to the Web version of this article.) 
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was evaluated according to the Clinical and Laboratory Standards 
Institute method as described in the supporting information (Tholen, 
2004; Borysiak et al., 2016). The measured LoD for each source is pro-
vided in Table 2. Here we provide the detection limit in mass of par-
ticulate matter per volume of extraction liquid as well as a calculated 
particulate matter concentration per volume of sampled air, assuming a 
24-h sampling time at 1.8 L per minute (see section S1 for calculation 
details). Diesel has the weakest fluorescence intensity and thus the 
highest LoD of 2.2 μg/mL cyclohexane or 2.6 μg/m3 air. The LoD for 
each source in a 24-h sampling period is significantly lower than the 
WHO and USEPA 24-h mean exposure guidelines of 25 and 35 μg/m3 

respectively (Aable of Histo, 2018; World Health Organization, 2006). 
The ability to identify if PM from a source is present or absent above 

a threshold level could be a useful tool for clinicians and asthma patients 
in treating asthma or for asthma research, for example. To this end, we 
evaluated the ability of the CNN analysis of EEM spectra to detect the 
presence of individual sources above a threshold of 1 μg/mL. This 
threshold corresponds to an average exposure of nearly 10 μg/m3, the 
WHO annual average guideline, during a 3-h sampling period at 1.8 L/ 
min. In Fig. 5, we plot the predicted concentration of each source in 
either a negative or positive column. Samples are considered positive if 
they had a true concentration (measured gravimetrically) of 1 μg/mL or 
greater of any of the single sources, and negative if they are below this 
concentration. This analysis method is based on the establishment of a 
cut off value for a qualitative diagnostic health test (Borysiak et al., 
2016). The clinical sensitivity, specificity, and overall accuracy of the 
diagnostic is then determined by choosing a threshold which delineates 
the positive from negative results. Depending on the purpose of the 
diagnostic test, the threshold may be set to achieve a specific outcome. 
For example, in the case of screening for a deadly but treatable disease, 
the number of false negatives would be minimized (i.e. maximizing 
sensitivity) (Borysiak et al., 2016). In this work, we choose the threshold 
that maximizes the accuracy for each source. Fig. 5D shows a plot of 

source detection accuracy as a function of the calibrated threshold value 
used as a cut off between positive and negative detection. This plot 
shows that as we increase calibrated threshold value the detection ac-
curacy for each source increases to a maximum and then decreases 
because as the threshold increases nearly all positive samples are clas-
sified as negative. The threshold of maximum accuracy varies with the 
source. The predicted concentration thresholds for maximum detection 
accuracy for cigarette, diesel, and woodsmoke are 0.6, 0.8, and 
0.7 μg/mL, respectively. These thresholds are shown by red horizontal 
lines in Fig. 5A–C and when applied, we achieve an overall accuracy of 
89%. The accuracies for identifying cigarette and woodsmoke were 98% 
and 99% respectively. Diesel was more challenging because of its low 
signal intensity relative to the other sources and had one false positive 
and seven false negatives giving an accuracy of 92%. 

After setting threshold values for source classification using all 101 
test spectra, we evaluated the model performance on sub-groups of the 
test set. The sub-group of spectra containing single sources consisted of 
sixty-nine spectra from sixteen filter samples ranging in concentration 
from 0.2 μg/mL to 10 μg/mL. Within this group we classified the sam-
ples with an overall accuracy of 91%. Cigarette and woodsmoke spectra 
were identified with the best results while diesel was the most often 
misclassified with a sensitivity of 0.91 and a specificity of 0.98. Next, we 
tested the algorithm on the sub-group of test spectra containing two or 
more sources. Twenty-one samples were generated by mixing liquid 
extracts together and five were from exposing an individual filter to 
multiple PM sources. The results of the analysis are shown in Table 3. 
The CNN algorithm was able to identify the sources present in mixed 
samples with an overall accuracy of 81%. The sensitivity and specificity 
for cigarette and woodsmoke was perfect; however, diesel continued to 
show challenges with a specificity of unity and a sensitivity of 0.75. The 
relatively low sensitivity of diesel is a result of the diesel spectra being 
weaker than and overlapping with the other sources resulting in five 
false negative results. Finally, we evaluated six process blank spectra 
and the algorithm correctly identified them all as not containing any of 
the sources. The results for classification of sub-groups are summarized 
in Table 3. 

We evaluated a partial least squares (PLS) and a linear model to 
interpret the EEM spectra in the same manner as the CNN. The linear 
model achieved an overall accuracy of 68% and the PLS model had an 
overall accuracy of only 40%. Both the PLS and linear models performed 
poorly largely due to an inability to accurately predict diesel concen-
tration. We included the results of these comparative models in section 
S7. 

We tested the limits of our algorithm by applying it to a set of twelve 

Fig. 5. Classification plots showing classification of test data for (a) cigarette, (b) diesel and (c) woodsmoke sources as present or absent. Data points above the 
threshold (red horizontal line) are predicted as positive for the source. The location of the threshold was chosen to give the maximum accuracy for classifying each 
source individually. The source detection accuracies vs. calibrated thresholds are shown in (d). (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 

Table 2 
LoD determined by applying the CNN model to single source samples. The col-
umn reporting LoD in μg/mL is determined using PM mass measurement of 
filters dispersed in a volume of cyclohexane. The column reporting μg/m3 in air 
is determined by converting the LoD in μg/mL to μg/m3 assuming a 24-h sam-
pling time at an air sampling rate of 1.8 L per minute.  

Source LoD [μg/mL cyclohexane] LoD [μg/m3 air] 

Cigarette 0.6 0.7 
Diesel 2.2 2.6 
Woodsmoke 0.8 0.9  
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field spectra. We had a limited number of spectra available for this test 
and the algorithm was optimized for the laboratory samples, therefore 
the results are limited in scope to understanding potential difficulties 
when applying this method to a larger set of field samples. EEM spectra 
from the field samples were mathematically normalized to an extract 
concentration of 10 μg/mL for ease of interpreting results: the classifi-
cation threshold used to train the CNN was 1 μg/mL so a spectrum will 
be classified as positive for a source if that source makes up 10% or more 
of the normalized EEM. We expect many sources of PM to contribute to 
the field samples such as crustal dust and biological material. The EEMs 
from the eight background field samples looked most similar to diesel 
and cigarette spectra (Fig. S7A). The CNN predicted cigarette as present 
in three background samples, diesel as present in four and woodsmoke as 
present in two. We did not expect any of the background samples to 
contain cigarette smoke, as they came from non-smoking households 
and buildings, but this source was detected in three samples that had 
spectra of similar appearance to cigarette smoke. This suggests that 
some sources of PM have similar EEM spectra. Diesel may have been 
present as all samples were collected in urban areas of Seattle. Wood-
smoke was detected in two background samples. The spectra where 
woodsmoke was detected looked most similar to diesel, but had higher 
fluorescent intensity than diesel at the same concentration (10 μg/mL). 
This illustrates that the CNN may give unexpected results when 
analyzing spectra that are different than spectra used in training. These 
results illustrate that an appropriate training set containing as many of 
the expected sources of PM as possible will be key for successful appli-
cation to real world samples. 

Woodsmoke was the expected primary source in an ambient sample 
taken in the UW cookstove lab and in a sample taken from an open 
window during a time when forest fire smoke was causing air pollution 
in Seattle. Woodsmoke was detected in the cookstove lab sample as 
expected and the EEM resembled other woodsmoke spectra (Fig. S7B). 
We believe this was due to small amounts of woodsmoke escaping the 
ventilation system during stove testing. Woodsmoke was not detected in 
the sample taken during the forest fire smoke episode. We believe this is 
due to the forest fire smoke having a different composition than the 
laboratory generated woodsmoke due to a combination of aging during 
atmospheric transport and different combustion conditions in a forest 
fire compared to a cookstove. Diesel exhaust was expected and detected 
as present in a sample taken in a mechanical room at the diesel exhaust 
exposure facility. We believe this was due to fugitive emissions of diesel 
exhaust as with the cookstove sample. Cigarette smoke was expected in a 
sample taken outdoors near a smoking area but only diesel was detected. 
In retrospect, we believe this was due to minimal amount of cigarette 
smoke present in the sample as the PM concentration measured by the 
filter was 6.3 μg/m3, while the average concentration measured over the 
same time period at two nearby air monitoring sites in Seattle was 
5.5 μg/m3 showing that this outdoor sample likely consisted of a typical 
mixture of urban PM that would be expected to include diesel exhaust 
(Puget Sound Clean Air Agency, 2019). 

4. Conclusions 

We used a CNN model to successfully classify cigarette, diesel, and 
woodsmoke sources as present or absent in a series of laboratory sam-
ples. The limit of detection for our method is 0.7, 2.6, and 0.9 μg/m3 in 
air for cigarette, diesel, and woodsmoke respectively. The CNN was able 
to identify cigarette and woodsmoke individually and in the presence of 
the other sources with 98% and 99% accuracy respectively, while 
classification of diesel was less accurate with an accuracy of 92%, 
sensitivity of 0.84 and specificity of 0.98. The overall classification ac-
curacy for all three sources was 89%. When testing the limits of our 
algorithm by classifying field samples, some samples were classified as 
expected while in others, sources were detected as present even when 
they were not expected. This illustrates the need for a training data set 
with samples from more sources is needed for application to field sam-
ples. In future work we will further evaluate the performance of the 
EEM-CNN method on field samples by comparing it to source appor-
tionment performed using an orthogonal method (e.g. X-Ray Fluores-
cence). Additionally, we expect atmospheric aging of PM may change 
EEM spectra in intensity and/or overall appearance. A controlled study 
of these effects using an atmospheric chamber would be valuable to 
further evaluate this method. 
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Table 3 
Classification results for sample sub-groups containing spectra with only one PM source and mixtures (two or three sources). The overall accuracy for the single source 
and mixtures groups were 91% and 81% respectively.   

Single Source Mixtures Process Blanks 

Cigarette Diesel Wood Cigarette Diesel Wood Cigarette Diesel Wood 

True þ 16 21 17 21 16 20 0 0 0 
True - 51 45 51 5 6 6 6 6 6 
False þ 1 1 0 0 0 0 0 0 0 
False - 1 2 1 0 5 0 0 0 0 
Accuracy 0.97 0.96 0.99 1.00 0.81 1.00 1.00 1.00 1.00 
Sensitivity 0.94 0.91 0.94 1.00 0.75 1.00 1.00 1.00 1.00 
Specificity 0.98 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00  
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